If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-7=0
a = 10; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·10·(-7)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*10}=\frac{0-2\sqrt{70}}{20} =-\frac{2\sqrt{70}}{20} =-\frac{\sqrt{70}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*10}=\frac{0+2\sqrt{70}}{20} =\frac{2\sqrt{70}}{20} =\frac{\sqrt{70}}{10} $
| 11=5y/7 | | 7x-5=-6x-35 | | 8=8x-4(x+8)+11 | | -117=-3x-6x-9 | | 10v=8v+4 | | z+44/6=10 | | -3+1/2n=1/2(n+14) | | 6a+3=21-3(1-2a) | | 7(s-94)=21 | | 8x-7+9x-28=180 | | 5u2+u+3=0 | | 8x-7-9x-28=180 | | y^2=7/10 | | 15y÷10=1 | | 8t2+8t+2=0 | | 5/8x-3/8x=15 | | 62+5a=-11 | | s2+6s+9=0 | | x-5=5x+45 | | 7(s-94)=24 | | 5t−8=6t | | 6k+20=-4k | | 6x+9+4x-19=180 | | 3v−1=2v+9 | | 8y+36=-2y+6 | | 15=11q-18 | | 15=11q-8 | | 11=4r-5 | | s+11=2s-7 | | n/4+2=5 | | 4+b^2=16 | | -8k−10=-7k |